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SUMMARY

When animals can choose from a range of feeding options, often those options with a higher energetic
gain carry a higher risk of predation. This paper analyses the optimal trade-off between food and
predation. We are primarily interested in how an animal’s decisions and its state change over time. Our
models are very general. They can be applied to growth decisions, such as choice of habitat, in which
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The food—predation trade-off

case we might consider how the state variable size changes over an animal’s lifetime. Equally our models
are applicable to short-term foraging decisions, such as vigilance level, in which case we might consider
how energy reserves vary over a day. We concentrate on two cases: (i) the animal must reach a fixed
state, its fitness depending on when this is attained; (ii) the animal must survive to a fixed time, its fitness

depending on its final state.

In case (i) minimization of mortality per unit increase of state is optimal under certain baseline
conditions. In case (ii) behaviour is constant over time under baseline conditions (the ‘Risk-spreading
Theorem’). We analyse how these patterns are modified by complicating factors, e.g. time penalties,
premature termination of the food supply, stochasticity in food supply or in metabolic expenditure, and
state-dependence in the ability to obtain food, in metabolic expenditure and in predation risk. From this
analysis we obtain a variety of possible explanations for why an animal should reduce its intake rate over
time (i.e. show satiation). We show how “earlier work can be viewed as special cases of our results.

1. INTRODUCTION

The trade-off between energetic gain and the risk of
predation is a topic of central interest in behavioural
ecology. The general idea is that by varying some
aspect of its behaviour an animal can control both its
rate of energetic gain and the probability that it is
killed by a predator. High rates of gain can be
achieved only at the cost of a high rate of predation
(e.g. Milinski 1986; Dill 1987; Sih 1987; Lima & Dill
1990). This trade-off can arise in various ways,
including the following.

(a) Choice of habitat

The animal can forage in various areas or habitats.
Each habitat has an associated rate of gain and
danger of predation. The choice can occur on various
spatial and temporal scales. For example, an animal
may change its energetic gain and danger of predation
both rapidly and repeatedly by changing the distance
from cover at which it forages (e.g. Schneider 1984;
Lima 1987; see also Werner & Hall 1988). In contrast,
fledging in birds and metamorphosis in amphibians is
an irreversible change of habitat that occurs once in
the animal’s life and may involve movement between
widely separated habitats.

(b) Level of vigilance

In some species of animals foraging is incompatible
with looking around for potential predators (e.g. Lima
1990; Elgar 1989). A high level of vigilance results in
little danger of predation but also a low rate of
energetic gain.

(¢) Group size

Foraging in a group of animals has both costs and
benefits. Although an animal may benefit from food
found by other members of the group, it shares its food
with them and thus may have a lower food intake
than a solitary animal (Pulliam & Millikan 1982;
Clark & Mangel 1984, 1986; Magurran 1990). It may
also have a lower danger of being killed by a predator
as group size increases, both because of the reduced
probability that it will be the animal attacked by the
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predator (dilution effect) and because of the vigilance
of other group members (e.g. Bertram 1978; Lima
1990; McNamara & Houston 19924).

Further examples of the trade-off concern the
distance that an animal allows a predator to approach
before fleeing and the time spent in a safe place before
returning to forage after a disturbance (see Ydenberg
& Dill 1986; Lima & Dill 1990).

Although we present our results in terms of the
trade-off between energetic gains and danger of
predation, they are also relevant when other factors
cause the mortality. For intertidal organisms, the
mortality might result from desiccation. Swennen et al.
(1989) suggest that oystercatchers can increase their
intake rate at the cost of an increased probability of
damage to the bill. Good feeding areas or easy prey
such as snails might involve a high risk of parasitic
infection.

As the trade-off between food and predation is both
widespread and an important determinant of fitness,
considerable effort has been devoted to models which
predict the behaviour favoured by natural selection.
One basic problem in formulating a model is to
compare the benefits of feeding and tihe cost of
predation. Early work on this topic (Sibly & McFar-
land 1976; Milinski & Heller 1978) used an ad hoc
objective function or currency that was not obviously
related to fitness. Subsequent work has attempted to
use a currency that has an obvious interpretation in
terms of fitness. The biological role of energy must first
by identified. For a small bird in winter, feeding is
important in maintaining fat at a level that enables it
to avoid starvation when foraging is interrupted by
darkness or bad weather (see Lima 1986; Blem 1990;
McNamara & Houston 1990« and therein). Birds also
build up levels of fat in order to migrate (e.g. Alerstam
& Lindstrom 1990). Food can instead be used for
growth, which may improve survival probability or
enable the animal to reproduce.

Once the biological role of energy has been identi-
fied, a variety of modelling techniques can be used to
find the policy which maximizes fitness. Stochastic
dynamic programming has been widely used in this
context (e.g. McNamara & Houston 1986; Mangel &
Clark 1986, 1988; Mangel 1990; McNamara 1990;
McNamara & Houston 19904; Szekely et al. 1991).
Houston & McNamara (1988) argue that realistic
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models of starvation require a stochastic approach. In when an animal has a choice between two habitats in

contrast, growth has been investigated using deter- which to forage, « will be the proportion of time in the
ministic optimal control theory (e.g. Leon 1976; habitat with the better food supply. When we are
Alexander 1982; Gilliam 1982; Sibly et al. 1985). modelling vigilance behaviour of an animal, we
Gilliam (1982) considered an animal that had to envisage the animal as switching between being
grow to a certain size before it could reproduce and vigilant and feeding on a time scale of a minute or less.
showed that the animal should minimize the preda-  u is then the proportion of time spent feeding over a
tion per unit of growth. This simple and intuitively  longer period (e.g. an hour) and'l —u is the propor-
appealing result depends on the assumption that  tion of time for which the animal is vigilant.
fitness does not depend on the time of reproduction. The animal’s options sometimes include a special
Ludwig & Rowe (1990) and Rowe & Ludwig (1991) habitat in which the animal is safe from predators. We
@ have considered the effects of time constraints on refer to this habitat as a refuge.

optimal behaviour. Their work (which we review

below) is based on an animal switching between (b) State

habitats, and their results concentrate on the timing of

such switches. Sibly et al. (1985) are concerned with The animal’s state is characterized by the variable

patterns of growth. They model foraging activity by a  #. For a bird foraging over a day we would take x to

control variable » which can vary continuously; they be its level of energy reserves (McNamara & Houston

find the optimal time course of u and the resultant 1982, 1986), whereas for a fish moving between

pattern of growth. habitats over a period of months (Werner & Gilliam
We develop a general approach which incorporates ~ 1984; Werner & Hall 1988), x would represent the

the models of Gilliam (1982), Ludwig & Rowe (1990),  body mass of the fish or some transformation of it,

and Sibly et al. (1985). Our approach is to derive  such as the logarithm of the mass.
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52 general results by analytical means, although this is We assume that the mean increase in x per unit

Eg not possible in all‘ cases and we then resort to time is

82 i numerl(.:al computations. D.lﬂ‘er?nt quahtatlve': forms p(ux) = a(x)u—b(x), (1)

AL 0 of the link between energetic gain and predation risk

o% are considered. We also specify how both predation i.e. u is scaled so that mean gain is linear in «. The

=< risk and energetic gain depend on size (or reserves).  exact form and interpretation of a(x) and 4(x) depend

EE From these relationships we deduce how behaviour ~ on the animal that we are studying. We have set up
and size (or reserves) should change over time. We our model so that a(x) is always positive, but 5(x) may
will be concerned with how these results are modified ~ D¢ positive or negative. When there are two habitat.s,
by time constraints, interruptions, refuges from preda- with a gain go(x) in Habitat 0 and a gain gi(x) in
tors and stochasticity in the food supply. Habitat 1, then

We establish conditions under which Gilliam’s

ux) = (1 —u)go(x) + ugi(x)
criterion does give the optimal policy and show how it V)= ol

must be modified under other conditions. In the = (&1(%) — go(x) )u+ go(x), 2)
simplest cases it is optimal for foraging activity to which has the same form as equation (1). We assume
remain constant, a result we call the ‘Risk-spreading that Habitat 1 is better in terms of food, so that
Theorem’. We consider this as a null case and identify a(x) =g1(x) —go(x) is positive. In this case, b(x)=
conditions under which foraging activity increases — go(x) 1is negative.

over time and conditions under which it decreases. When u represents the proportion of time that an

animal spends feeding, as opposed to being vigilant,
and x is energy reserves, the interpretation of &
2. THE MODEL depends on how foraging intensity u affects metabolic
expenditure. If expenditure is independent of «, b(x) is
the mass-dependent metabolic rate and a(x) is the rate

(a) The control variable

2 The variable that characterizes the animal’s beha-  at which energy is gained per unit time spent feeding.
o > viour is u, where 0<u<1. A large value of u When expenditure increases linearly with «, 5(x) is the
O - corresponds to high energetic gain and high preda- metabolic expenditure when «=0 and a(x)u is the rate
=~ [43] tion. The options available to an animal may form a  at which energy is gained per unit of time minus the
— continuum, as with distance from cover, or may be additional metabolic cost incurred by feeding at
SN discrete, as with choice of habitat. u provides a way of intensity ». In birds, under both these interpretations
E O ranking the available options in terms of their food it is reasonable to assume that the the cost of flight
= supply. #=0 then corresponds to the choice of the means that b(x) increases with energy reserves (e.g.
option with the least food, and u= 1 corresponds to the =~ McNamara & Houston 1990a). We also expect a(x) to
choice of the option with the most food. either be constant or to decrease with x. When x
We will often consider an animal which is perform- corresponds to the body mass of a growing organism,

ing two activities between which it can switch. We a(x) is likely to be an increasing function of x.

then focus on the proportions of time spent performing
each activity over a short period of time. We take u to
be the proportion of time spent on the activity that
provides the higher rate of energy gain. For example, The probability that the animal is killed by a

(¢) The danger of predation
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Figure 1. Possible trade-offs between predation risk and energy gain as described in the text. Closed circles represent
discrete options; dotted lines correspond to taking some proportion of discrete options. Solid lines represent a
continuum of options. (d) also illustrates the analysis of Gilliam & Iraser (1987); u. is the constant value of u
sufficient to attain x. at final time 7. u. will thus depend on the starting value, x(0). To achieve the value u. only

options A and B are used.

predator per unit time is M(u,x). For fixed x we
assume that M(u,x) is an increasing function of u.
Various forms of the relationship between M and u are
considered. We illustrate these forms in figure 1.

(1) M(ux) increases linearly with u

Suppose that there are two habitats with predation
rates Ai(x) and Ag(x), and u is the proportion of time
spent in Habitat 1. Then M (u,x) is linearly dependent
on u:

M (u,x) =uly(x) + (1 —u)Ag(x).

(i) M(ux) is a strictly convex function of u, i.e. *M|0u®> 0

This form of function might be expected when u is
the proportion of time a foraging animal spends
feeding and 1 —u is the proportion of time for which it
is vigilant. The predation risk if every other minute is
spent vigilant (¢=0.5) is likely to be less than half the
predation risk if the animal is not vigilant at all
(u=1).

(1) M(ux) s strictly convex with M(0,x) >0, but there is a
refuge

In this refuge the animal is safe from predators, i.e.
there exists another option for which A is zero. For
example, when there is a choice between feeding and
vigilance, =0 corresponds to the bird being in the
foraging area but spending all its time being vigilant.
This may still involve some danger of predation.
When the bird has a refuge it can leave the foraging
area and go somewhere where there is no danger of
predation.

(iv) M(ux) is piecewise linear and convex
Suppose an environment is composed of a number

Phil. Trans. R. Soc. Lond. B (1993)

of distinct habitats. Each habitat is characterized by
its net rate of energy gain and predation risk per unit
time. The animal must choose the proportion of time
it spends in each habitat. We may represent the
energy gain and predation risk under each option
diagramatically (figure 1d). It is clear that certain
options will never be used. Those that are used can be
parametrized by u where the option giving the lowest
energy gain corresponds to =0 and the option giving
the highest gain corresponds to u=1. It can be seen
from figure 14 that as u increases, M (u,x) increases in a
piecewise linear manner and that M(u,x) is also a
convex function of u.

(d) The terminal condition

In this paper, we look at two circumstances in
which a trade-off between energetic gain and preda-
tion can occur.

(1) Fixed state

The animal has to get to one particular state, x., if it
is to have any reproductive success. The reproductive
value of reaching x. may depend on the time t at
which this state is reached. For example, in a
population growing at rate A, the reproductive value
may be discounted by a discount factor e~ as in
Sibly et al.(1985). Alternatively, it may be that young
which are produced late in the season are less likely to
survive to maturity, and hence the reproductive
success associated with reading x. may decline with ¢.

(1) Fixed time
The animal’s state at some fixed time, 7, deter-
mines its reproductive success.
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Although we analyse these cases separately, the We illustrate this rule with a simple example.
results of one case can be relevant to the other. For
example, suppose an animal must reach a fixed state (i) Example 1
x. before it can reproduce. Under the optimal policy it Let the state variable x be the animal’s body mass.

attains this state at time #r. Then often the optimal =~ We interpret u as the proportion of time spent feeding.

trajectory is the same as if it were a fixed-time  a(x) can then be interpreted as the rate of mass

problem with final time 7= . increase per unit time spent foraging due to food
In the discussion we relate our results to the case in  acquisition and &6(x) can be interpreted as the rate of

which neither final state nor final time are fixed, there =~ mass loss due to metabolic expenditure. We suppose

being a trade-off between the advantage of a high mortality can be expressed as

final state and the disadvantage of a late final time. M) = o (x)i. )

Here a(x) specifies how predation risk changes with

Opti havi . Lo
(¢) Optimal behaviour body mass. When A has this form, minimization

]

< — We will always denote the optimal strategy by  of expression (3) is equivalent to minimization of

> — uopr(x,t). This function specifies the value of » used for W2(a(x)u—b(x)).

O s each state x and time (/. The behaviour of an animal By differentiating with respect to « it can be verified

Qﬁ e following an optimal strategy is described in two ways. that this quantity is minimized by setting u = ug where
x*(t) specifies how the animal’s state changes with _

E 8 time. This function is found by solving the equation uo(x) =2 b(x)/a(x). ()

= da* [t =y (uopr(x*,0),x*). u*(t) specifies how the value One immediate conclusion is that in this example
of u changes with time. This function is given by the form of mass dependence a(x) in the predation risk

2 (1) = uopr(x* (1),0). (I;llfls no influence on the optimal policy. This point is
iscussed further below. As growth increases x, uc(x)
The paper is organized so that we first analyse the  will change, and the direction of change will deter-
fixed-state case in detail and then the fixed time. mine whether »*(#) is an increasing or decreasing
function of time. Equation (5) shows that the relative
scaling of the gain rate and metabolic expenditure
determines the direction of change. If metabolic
In this section we will start by looking at the simplest ~ expenditure increases faster than the gain rate, «* will
case under which Gilliam’s rule gives the optimal  increase over time; if the gain rate increases faster than
policy. We then allow an animal’s reproductive  expenditure, «* will decrease.
success to depend on the time of reproduction. An animal using the Gilliam rule will grow at rate
Penalizing late reproduction is shown to have the dx*[dt=7y(ug(x*),x*). Substituting for ug(x*) from
same effect as having a food supply which terminates  equation (5) gives
u.nprffdictab.ly. Lastly, variability in food gain per unit dwJdi=b(x*), (6)
time is considered.

3. FIXED STATE

PHILOSOPHICAL
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so that, rather suprisingly, in this special case the

growth curve depends only on metabolic expenditure.
Once the growth curve x*(¢) has been found from
The rule derived by Gilliam (1982) is to minimize  integrating equation (6), we can substitute in equa-

mortality/gain; i.e. in our notation tion (5) to find u*(¢) =ug(x*(1)).

Of course the above analysis assumes that ug(x) can

(a) Minimizing predation per unit increase in state

— M(w)[(a(x)u—=b(x)), (3) be found by differentiation. Care must be taken that
@ is minimized (where u is restricted to values for which the value of ug(x) found from equation (5) does not
the gain is positive). This minimization is carried out exceed 1. If it does the analysis needs to be modified.
independently for each state x, and gives a strategy The metabolic rate of fish increases with mass raised

uc(x) prescribing the value of u to be used in each to a power between 2/3 and 1 (Ursin 1967). To
state. Henceforth, ug will always refer to the u  illustrate our results, let 6(x) =box*"™ and suppose that
prescribed by the Gilliam rule and will be referred to  a(x) =aox’. Thus the gain rate increases faster than
as the Gilliam rate. This strategy is an optimal one for ~ metabolic expenditure if d>0.75. Figure 2 illustrates
reaching the fixed state provided there are no time g as a function of x and «*, and x* as functions of ¢ for
constraints or time penalties and food options are various values of d.

deterministic (i.e. uopr(x,t) = u(x) provided these con-

THE ROYAL
SOCIETY

ditions hold). (ii) Three conditions under which uc is independent of certain
Gilliam developed the AM/y rule in the context of the  parameters
ontogenic movement of sunfish between habitats (see In the above example the Gilliam rate ug did not

Werner et al. 1983; Werner & Gilliam 1984; Werner & depend on the way in which predation risk changed
Hall 1988; Turner & Mittlebach 1990). It has also with body mass. More generally, if M(x,x) can be
been applied to the timing of metamorphosis in  expressed as a function of x times a function of u, so
amphibians (Werner 1986) and to the levels of fat  that M(u,x)=0(x)N(u), then minimization of A (u,x)/
carried by migrating birds (Alerstam & Lindstrom  y(u,x) is equivalent to minimization of N(u)/y(u,x) and
1990). uc, does not depend on o(x).
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Figure 2. Illustration of Example 1 in which a hypothetical
fish must grow from 10 g to 1 kg before it can reproduce.
There are no time constraints, so that the optimal policy
minimizes the mortality risk per unit increase in mass.
Predation M(u,x) =o(x)u* for any function of body mass
a(x). Metabolic expenditure, b(x)=0.005x"" We show
three cases differing in how the rate of food acquisition a(x)
scales with body mass. The actual scaling for a particular
species may depend on, for example, whether it is a filter
feeder or stalks its prey. (a) the growth curve is the same in
all three cases (equation (6)). (b)) The dependence of
uopr(%,t) =uc(x) on mass (equation (5)). (¢) From (a) and
(b) we can calculate how u*(f) depends on time ¢.

Even if M(u,x) cannot be expressed in the above
form we can write M (u,x) =Aa Ma(u,x), where A4 is the
overall rate at which predators attack, and M, is the
mortality rate given that an attack occurs. It is clear
that the value u that minimizes M|y does not depend
on Aa.

Phil. Trans. R. Soc. Lond. B (1993)
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To examine the dependence of u; on feeding
parameters, consider the case when « is the proportion
of time feeding. Then if metabolic expenditure can be
ignored, we have y(u,x) =a(x)u, so that ug does not
depend on the gain rate, a(x). As we demonstrate
below, this result no longer holds when an animal
reproduces at a fixed time rather than at a fixed state.

McNamara & Houston (19924) derive the latter
two results when reviewing models of vigilance beha-
viour. They show that the model of vigilance proposed
by Pulliam et al. (1982) is based on minimizing M|y
and that this results in optimal behaviour being
independent of both the rate at which attacks by a
predator occur and the food supply. They further
show that these results follow from the absence of time
constraints or time costs.

(b) Including a time penalty

Minimizing M|y is optimal if the time at which the
critical state is reached has no influence on reproduc-
tive success. A more general assumption is that the
animal must reach some critical state, but if this state
is reached at time 7 then the animal’s reproductive
success is Rep(t) which decreases as t increases. The
animal’s expected reproductive success is the probabi-
lity that it survives to the critical state x. multiplied by
the resulting reward:

exp{ - }M(u,(t) ,x(t))dt} Rep(1).

It is now convenient to define quantities Ry and (1)
by Ro=Rep(0) and 6(7)= —log(Rep(1)/Rep(0)), so
that Rep(t) = Ro exp(— 6(7)). As Rep(7) is decreasing
in 7, 8(t) is a non-negative increasing function of 7.
The formula for reproductive success can then be
rewritten as

0

CXP{ — J(M(u(),x(2)) + 9'(t))dl} Ro,

which generalizes a result of Sibly et al. (1985).

This formula shows that the inclusion of a time
penalty results in a problem equivalent to reaching a
state x. under the time-dependent mortality pressure

M (ux,t) = M(ux) + 60 (8),

where the reproductive success on reaching x. is Ry
and is not discounted by time.

In this case it is not necessarily optimal to minimize
M|y at each time because of the time dependence.
But when 6(f)=0, and thus 6(f)=0; we have
M (u,x) = M (u,x) + 0o, which is independent of ¢ and
the optimal policy is to minimize A/y. In other words,
Gilliam’s rule then gives the best behaviour provided
that the ‘mortality’ rate is modified by adding 6o. The
general effect of this modification of the mortality rate
is to increase u* compared to the value of u that
minimizes M/y.

Figure 3 illustrates the effect of including a time
penalty on the growth of a hypothetical mammal. The
illustration is of a case where M and y do not depend
on x. As is shown below, the Risk-spreading Theorem
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then implies that an animal should use a constant (a)
value of u in reaching x.. Thus the trajectories giving
an animal’s state as a function of time are straight
lines. When there is no time penalty, trajectories from
different initial states are all parallel. When 0(#) = 0t,
trajectories are still parallel but have a greater slope.
When 6(f) =00 trajectories from different initial
states are no longer parallel: when an animal starts in ' 8(t) = 0
a high state, its feeding intensity is similar to that
when there is no time penalty; when its initial state is 0.5
low it has to work much harder than when there is no 0 05 0 15
time penalty. The figure considers different initial t = time/year

states, but a similar result holds when different initial

times are considered. Under no time penalty the start (b)

time has no effect. Under a penalty of the form
0(t) = 0o, the later an animal starts the harder it
should work to obtain food.

Effect of attack rate

Let M(u,x) =AaMa(u,x) where, as before, Ay is the
predator attack rate. We have seen that As has no 6(t) = 0.3t
effect on the optimal behaviour when there is no time
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= penalty. When there is a time penalty, the animal o1 i . .
52 should minimize 0 05 1.0 1.5
E g . t = time/year
83 S G CORORLAO
&% "
=|<Z: which is equivalent to minimizing
2|
(f)(MA(u(t),x(t)) + 0/ ()Ax " de.
Thus the effect of increasing A is effectively to 8(t) = 0.3 2
decrease the time penalty and hence to reduce the ’
feeding intensity u* (c.f. McNamara & Houston 0.5
1992q). T - T
0 0.5 1.0 15
t = time/year
(¢) Premature termination of foraging Figure 3. Growth to a fixed size under three different time

penalties. This might illustrate a mammal after weaning
which must grow to 2 kg before it can reproduce. For each
time penalty we consider three different sizes at weaning.

Our analysis so far has assumed that the forager will
not be interrupted before it reaches the critical level

%c. There are, however, many circumstances in which (a) No time penalty; (b) Rep(t)=Rep(0)exp(—0.31);
random interruptions are likely. For example, the (¢) Rep(t)=Rep(0)exp(—0.382). M(ux)=0.84% yr=1. (u,x)
foraging of a small bird in winter may be interrupted =(4u—1) kg yr~%

by bad weather which prevents it foraging until dusk
(e.g. Lima 1986). The growth of insects or amphibians
in their aquatic phase may be halted by sudden relate 0(¢) to the above analysis in two ways. Prema-
drying out of their pond or stream (e.g. Wilbur & ture termination can be taken to result in an increase
Collins 1973; Wilbur 1980, 1984; McLachlan 1983; in mortality of §(f). Alternatively, premature termi-
Hildrew 1985; Petranka & Sih 1987). In a hibernating nation can be thought of as introducing time discount-
animal, the onset of winter may prevent further  ing (e.g. McNamara & Houston 1987), with 6(¢)
feeding. Different types of interruptions have different  acting as a discount factor. Whichever way we think
durations. Here we consider interruptions lasting of premature termination, it will increase u*.

sufficiently long that the animal is prevented from
attaining the critical level x. if an interruption occurs.
We refer to this as premature termination. (We will
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(d) The M|y rule in a stochastic context

also consider premature termination later when there Gilliam (1982) derived the M/y rule under the
is a fixed final time.) assumption that the environment was deterministic.

In the context of models of vigilance, McNamara & Options were characterized by their predation rate M
Houston (1992a) show that, when there is the possibi- and gain rate y. In this section we introduce stochasti-

lity of termination, the level of foraging should be  city into the food supply, and suppose that an animal
higher than the level predicted by minimizing M/y.  has a range of options which differ in M, mean gain
Let 6'(¢) be the rate of termination at time . We can  rate 7y, and variance in gain per unit time o2
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Table 1. The minimization of mortality per unit gain when the environment is stochastic and the gain rate is y=1

(For cach value of mortality M and variance 62 the table gives & as defined in equation (7), s the probability of
surviving over an increase of # in the state variable and 7y the gain rate which is certainty equivalent to y=1. By
certainty equivalent we mean that the value of £ when the gain rate is 99 and the variance is 0 is the same as
when the gain rate is 1 and the variance is ¢2.)
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o?= 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(1) M=0.05
K 0.0500  0.0500 0.0500 0.0499 0.0498 0.0497 0.0496 0.0494 0.0492 0.0490 0.0489
s(h=10) 0.6065 0.6066 0.6068 '0.6072 0.6077 0.6084 0.6092 0.6102 0.6113 0.6125 0.6138
Yo 1.0000 1.000 1.001 1.002 1.004 1.006 1.009 1.012 1.016 1.020 1.024
(i) M=0.25
K 0.2500  0.2497 0.2488 0.2472 0.2452 0.2426 0.2397 0.2363 0.2327 0.2288 0.2247
s(h=10) 0.08208 0.0823 0.0831 0.0844 0.0861 0.0884 0.0910 0.0941 0.0976 0.1015 0.1056
Yo 1.0000 1.001 1.005 1.011 1.020 1.030 1.043 1.058 1.074 1.093 1.112
(i) M=1
K 1.0000  0.995  0.981 0.959  0.931 0.899 0.865 0.831 0.797 0.764 0.732
s(h=2.5) 0.0821 0.0831 0.0861 0.0910 0.0976 0.1056 0.1150 0.1253 0.1364 0.1482 0.1604
Yo 1.0000 1.005 1.020 1.043 1.074 1.112 1.156  1.204 1.255 1.309  1.366

We model the change in the animal’s state as a
diffusion process with upward drift y and variance per
unit time % Then, in the absence of any state-
dependent effects, it is shown in Appendix 1 that the

usual criterion based on minimization of

k=M]y,

must be replaced by one based on the minimization of
K= (/& +2Ma?) —y)/d" (7)

We expect that this criterion will perform quite well
even if there are state-dependent effects.

k’ decreases with ¢? for fixed M and y, so that, given
the choice between options with the same predation
ratc M and gain rate 7y, the most variable option
should be chosen. For small Mo?, we have

K= (Mly)(1 - (Mo®/2y%)).

Some idea of the magnitude of the stochastic effects
can be seen from table 1.

When M, 7y and ¢ do not depend on state, £ does
not depend on state, and an animal following the
optimal strategy will not change its choice of options
over time. But the derivation of £ was based on the
approximation that starvation due to adverse fluctua-
tion in the food supply could be ignored (Appendix
1). Once starvation becomes important, optimal beha-
viour can depend on state and hence time. McNa-
mara e/ al. (1991) show that it can be optimal to
switch from a feeding option with low variance to one
with high variance as reserves increase.

We have not formulated the choice of options in
terms of a choice of «. Had we done so we would have
found that «* is constant over time when option
parameters do not depend on state. This is in contrast
to the results on a fixed time to reproduce given
below, in which #* usually decreases with time when
we introduce stochasticity, even in the absence of state
dependence.

An alternative approach to modelling environmen-
tal variability is given by Houston & McNamara

Phil. Trans. R. Soc. Lond. B (1993)

1990. They assumed that each environment is charac-
terized by a probability distribution of the parameter
that determines an animal’s growth. The probability
distribution specifies the possible growth trajectories
for the environment. In any particular growing
scason, only onc of these will occur and unlike the
preceding model, growth is deterministic with growth
rate at a given size proportional to the growth
parameter. Before an environment is chosen, the
particular growth trajectory is unknown. Houston &
McNamara show that if the means of the growth
parameter are all equal, survival to a critical size is
maximized by maximizing the variance of the growth
parameter when mortality is high and minimizing the
variance of the growth parameter when mortality is
low.

4. FIXED TIME

In this section we are concerned with an animal’s
behaviour over some period of its life [0,7]. The
animal starts in state x(0) at time 0. If an animal is
alive at time 7 and is in state x, then its expected
reproductive success after time 7T is given by a
terminal reward R(x) (McNamara & Houston 1986).
R(x) can be thought of a state-dependent generaliza-
tion of Fisher’s reproductive value. We seek behaviour
over the time period that maximizes expected future
reproductive success, i.e. that maximizes the probabi-
lity that the animal survives to 7" multiplied by the
expected reward given that the animal survives.
There are a variety of biological contexts in which a
well-defined period [0,7'] can be identified. For
example, a small bird in winter can only forage during
the daylight hours. We can take foraging to start at
t=0 (dawn) and end at the time ¢= 7" (dusk) when
the bird roosts for the night. R(x) is then the long-term
survival probability as a function of reserves at 7" (e.g.
see McNamara & Houston 1982, 1986, 19924). For a
foraging wading bird, the tidal cycle may determine
[0,7]. In a species which grows until the end of


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

The food—preparation trade-of A. 1. Houston and others 383

summer, 7" would be the end of the growing period (i) A4 discrete set of options
and R would specify subsequent reproductive success Assume that the animal has the choice of a series of
as a function of size when growth stopped. habitats. Each habitat has a characteristic predation
Our results are divided into two parts. We begin by =~ rate M and gain rate y, independent of the animal’s
assuming that M(u,x), a(x) and b(x) are independent  state. Gilliam & Fraser (1987) present a technique for
of x. For a small bird foraging between dawn and  finding the best allocation of time between the possible
dusk, this amounts to ignoring mass-dependent  habitats. Let there be n habitats with the predation
metabolism and predation. We believe the model is  rate in habitat i being M; and the gain rate being ;
likely to be a reasonable first approximation in this (=1, ..., n). Then by plotting the habitats in a space
case. For a growing animal, it is often possible to  with axes of gain rate and mortality, the optimum
choose the state variable in such a way that y(u,x) does  allocation can be found graphically: see figure 1d.
not depend on x. This procedure is described in detail (The solution minimizes mortality over the whole
in Appendix 2 and illustrated below. In this case our  period.) As Gilliam & Fraser point out, the optimal
results apply provided that mortality is independent of  solution is either to spend all the time in one habitat
body mass. or to spend time in at most two habitats. When two
The case with no mass-dependence will not always  habitats 7 and j are used, all patterns of exploitation
be realistic, but acts as a null model against which  that result in the same proportion of time in habitat ¢
mass-dependent effects can be compared. The effect of  have equal fitness, and it does not matter in which
mass dependence in mortality, in the rate of food gain  order the habitats are exploited.
a(x), and in the rate of metabolic loss &(x) are analysed
after we have analysed the mass-independent case in (1) M is a convex function of u and there is no refuge
detail. The basic result for this case is what we call the
‘Risk-spreading Theorem’.
Suppose that it is possible to get from state x(0) at
5. FIXED TIME: NO EFFECT OF STATE time O to state x at time 7. Then the opt%rr{al strategy
for doing so (i.e. the policy that minimizes the
We start by looking at the simplest possible case in probability of death from predation) is to use a
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which the terminal reward is a step function, there is constant value of u. We call this result the ‘Risk-
no refuge, no premature termination of foraging and  spreading Theorem’, because the risk of predation is
no stochasticity in the food supply. We then relax  thus spread evenly over 7. The constant value of u
these simplifying assumptions one at a time. satisfies

(au—b) T =x.—x(0).
(a) Baseline case . Lo
This result and a formula for the cost of deviation

Our assumptions are as follows: from constant u are derived in Appendix 3. Sibly et al.
(1985) derived the Risk-spreading Theorem using
: Pontryagin’s Maximum Principle. The theorem is
R(x) = {l if X Z X illustrated in figure 4a by an example of a small bird

1. The terminal reward function R is a step function

8)

0 if X < X that must attain sufficient reserves by dusk if it is to

. . . survive the night.
What this means is that the animal has a fitness of zero

if its state at time 7 is less than the critical value x,
but for all states at or above x. fitness is constant. This
sort of function has been used to model the relation-
ship between the reserves of a bird at dusk and its The step function used in the previous section
probability of surviving the night (e.g. Stephens 1981; means that all states that are below x. at 7 are equally
Houston & McNamara 1985). (A more realistic ~ bad, and all states that are above x. at T are equally
function is described in the next section.) A step good. In many circumstances it is more realistic to
function is also likely to be appropriate for an animal ~ assume that R is a smoothly increasing function of x.
that must build up its reserves to a critical level before ~ Models of the long-term survival of a small bird in a
migrating at a fixed time. stochastic environment suggest that log R(x) is con-

The optimal policy maximizes survival over the  cave (e.g. McNamara & Houston 1982, 1986). In this
period [0,7°] subject to the condition that x(7") = x.. section we assume that R has this property. This is

(b) R is log-concave

THE ROYAL
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Because x(7") can be increased only by an increase in always true when R is increasing and concave, but it
u and hence an increase in predation, it is obvious that ~ can also be true when R is sigmoidal, i.e. convex for
the best value of x at T is . small x and concave for large x. If we define r(x) =log
2. The foraging process is not subject to possible R(x), our assumptions are 7'(x) >0 and "’ (x) <O0.
interruptions or terminations before 7. We summarize To find the optimal policy, we start by finding the
this assumption by saying that there is no premature best way to get from state x(0) at =0 to a particular
termination. state x7 at {= T. By the Risk-spreading Theorem, it is
3. The food supply is not stochastic. best to adopt a constant value of « that can be found

: . . L from the equation
Given these assumptions, the optimal policies in two

circumstances are as follows. xr—x(0)=(au—0b)T.
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Figure 4. Risk spreading with (@) a step-function terminal reward and () a linear terminal reward. (a) is based on a
bird of 15 g lean mass which has 10 h of daylight to forage and requires 1 g of energy reserves at dusk if it is to
survive the night. « could be the proportion of time feeding as opposed to being vigilant. M (u,x) can be any convex
function of . y(u,x) = (0.354—0.1) g h~L. « is constant and depends on the reserves when foraging starts. (b) is based
on a large (~0.5 g) spider with a fortnight to go before winter. The number of eggs in the clutch laid at the end of
the fortnight is proportional to the reserves accumulated by then. M (u,x) =0.044? day 1. p(u,x)=0.0lu g day~1.

The probability that the animal survives the period
[0,77] is exp(— M(u) T'), and so the animal’s expected
future reproductive success is

W(xr)=exp(—M(u) T)R(x7).
Thus if we define w(x7) =log W(x7) it follows that
w(xr)=r(xr)— M(u)T.

The best choice x7* of xy maximizes W(xr), and
hence also w(x7). By differentiation

ar (%) = M’ (u¥),
where
x7% —x(0) = (au* —0) T.
(1) Example

Suppose that fitness at final time 7" is proportional
to state; i.e. R(x)=Rox for some constant R, Take

M (x) =mu?, and suppose for ease of presentation that
b=0 and T=1. The above equations then reduce to

ajxr™ =2mu*, x7* =x(0) + au*.

Eliminating x7* from these equations gives
2u* = (x(0)2/a® + 2/m) 2 — x(V) [a,

and hence

2x7* = (x(0)2 4 2a%/m) 2 4 x(0).

Phal. Trans. R. Soc. Lond. B (1993)

It is then easy to verify the following:

l. u* increases as a increases. That is, the better the
food the harder the animal works and the greater the
predation risk it incurs.

2. u* and x7* decrease with increasing m. That is,
as the predator attack rate increases, an animal should
take less risks and hence end up in a lower state at
final time 7.

3. u* decreases with increasing x(0), while x*
increases with increasing x(0). If the initial state is
higher an animal has more to lose in expected future
reproductive success by being killed by a predator. It
should thus take less risk. The decrease in «* means
that x* —x(0) decreases, but this decrease is not
enough to compensate for the increase in x(0) and the
state at final time increases. This effect is illustrated in
figure 46 by an example of a spider accumulating
reserves to convert into eggs.

(¢) The effect of a refuge

We start by assuming that the terminal reward is a
step function, as given by equation (8), and that the
animal can stop foraging and go to a refuge where it is
completely safe from predators. When the animal is
foraging (outside the refuge), the predation rateis M (u),
where M(0)>0 and M is increasing and strictly
convex. When it is outside the refuge, the animal’s
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Figure 5. The same scenario as for figure 4 but with the option of a refuge included. (a) M(u,x) proportional to
(0.15+u®) h=%, but in the refuge there is no predation. y(ux)=(0.354—0.1)gh"!, but in the refuge
y=—0.071 g h~! due to metabolic expenditure. The dashed line gives an alternative optimal routine in which some
time is spent in the refuge at the beginning of the day. (5) M(u,x)=(0.02+0.044®) day~!, but in the refuge
predation=0.004 day~'. y(u,x) = (0.0lu—0.002) g-day~!. Metabolic expenditure in the refuge is the same as while

foraging so that y= —0.002 g day~1.

rate of energy expenditure is b, whereas inside the
refuge it is b, (figure l¢).

Let dc be the value of u that minimizes M(u)/
(au—b+b,), and let £; be the state at time O such that,
when the control variable is maintained at the value
dg, the state at time T is x. (i.e. £g+7y(dg) T=x.).
Then, as shown in Appendix 4 and illustrated in
figure 5a, the optimal policy has one of two forms
depending on the starting value x(0).

1. If x(0) <%g, then u* is constant and greater
than ig.

2. If x(0) = 4g, then u* =g for the time required to
get to x. by time 7. The remaining time is spent in the
refuge.

In the second case it does not matter whether the
animal starts by foraging and then rests until 7" (figure
5), or starts by resting and then forages until 7, or
alternates between the two throughout the period (c.f.
our remarks on Gilliam & Fraser (1987) above).
However, once stochasticity or premature termination
is introduced into the model, it does matter in which
order foraging and resting are performed (see below).

Figure 56 illustrates the effect of a refuge when R(x)
is log-concave rather than a step function.

(d) Premature termination and a refuge

In the earlier section in which reproduction
occurred in a fixed state, we considered premature

Phil. Trans. R. Soc. Lond. B (1993)

terminations—interruptions after which foraging could
not recommence. In that case the animal had zero
reproductive success after a premature termination;
but when reproduction occurs at a fixed time, the
animal may already have attained a sufficient state to
survive after an interruption until the end of the time
period. For the moment, we assume that after termi-
nation the animal enters a refuge until time 7. In the
refuge there is no predation risk and the metabolic
expenditure is .. The animal may also choose to enter
the refuge before termination. Premature termination
occurs at rate ¢, and thus food is available to the
animal for an exponential time with mean ¢~!. These
assumptions might apply to a diurnally active animal
whose foraging can be interrupted until dusk by bad
weather. At the end of this section we develop an
example based on the early onset of winter for a
hibernating animal.

Consider first the case when R is a step function. An
animal whose state x at time ¢ satisfies x — b,( T — £) < x.
will receive a terminal reward of zero if its foraging is
terminated at this time. Thus premature termination
acts as an extra source of mortality. Since termination
occurs at rate ¢, the effective mortality is ¢+ M(u).
Once x— b,(T—t) = x, the animal will survive prema-
ture termination and should enter the refuge whether
interrupted or not. The results derived for the refuge
when there is no premature termination can thus be
modified as follows. Let dg be the value of u that
minimizes (¢+ M(u))/(au—b+5,) and let £g be, as
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Figure 6. Premature termination with an S-shaped terminal reward. The sets of three solid lines are based on the
dormouse example described in the text, and each corresponds to a different level of energy reserves at :=0.
M (u,x) = (0.0005+0.00154'%) day~%; in the refuge M =0.0015 day~'. y(u,x) = (40u—25) kJ day~!; in the refuge
y= —3.5kJ day~L. Interruption rate, ¢=0.015 day~!. The terminal reward is given by R(x) = x%/(x% + ¢) where ¢ is
a constant that ensures the point of inflexion is at x=>500 kJ. For these parameters the animal does not go into the
refuge voluntarily, but it does if we reduce the predation rate in the refuge; the dotted line corresponds to predation
in the refuge =0.00088 day~! and x(0) =450 kJ. If the probability of interruption and metabolic costs are lowered,
the initial plateau can be lower than u*=1; for the dashed line ¢=0.00015 day~!, y(u,x) = (40u— 15) kJ day~,
x(0) =450 kJ. All curves show quantities conditional on termination not having occurred. The control variable is

shown in (@) and the reserves are shown in ().

before, the state at time O such that £+ y(dg) 7= x..
As with the refuge, if x(0) < #g, then u* is constant and
greater than dg; while if £(0) >xg, then u* =dg when
the animal is not in the refuge (figure 54). In contrast
to the case of a refuge alone, it does matter in which
order the animal forages and rests in the refuge.
Resting before its state is sufficiently high incurs a
mortality risk of ¢. It is thus optimal to forage first and
then rest.

The effect of increasing the termination rate ¢ is to
increase ¢ and hence increase the optimal value of «.

When R is not a step function, premature termina-
tion reduces an animal’s reproductive success at time 7"
but may not reduce it to zero. Typically, an animal
with low reserves behaves as if termination of foraging
is equivalent to death, and uses the constant control
u* =g if the time to go till 7 is sufficiently large. As
reserves increase, the loss in reproductive success as a
result of an interruption decreases until it is approxi-
mately optimal to ignore interruptions altogether. The
control variable «* is then again constant (by the Risk-
spreading Theorem) and can be found by the analysis
given above. Figure 6 illustrates the double plateau
in u*.

In figure 6 we consider a small mammal such as a
dormouse which must build up its reserves during the

Phil. Trans. R. Soc. Lond. B (1993)

autumn in order to survive its period of hibernation.
We consider a two-month period ending at time 7 in
late autumn. When winter ends varies from year to
year and thus the terminal reward is a sigmoidal
function of energy reserves at 7. The onset of winter is
also stochastic and terminates the animal’s foraging at
a constant rate ¢ before time 7. The animal hiber-
nates after termination, but it can also choose to enter
this refuge earlier. During hibernation metabolic costs
are lower, but here we do not assume that the refuge
has zero predation, and predation may be higher than
when active. # describes how much of the night is
spent active. If « is low, dangerous times are avoided
and so predation risk is a convex function of 4. Using
metabolic rates based on Gebczynski et al. (1972) and
plausible values for other parameters, the optimal
strategy is to initially feed all night and then switch to
feeding for around half the night (figure 6). This
pattern of behaviour is in agreement with  that
observed by Walhovd (1971).

(e) Stochasticity

In the last example (on dormice) environmental
stochasticity manifested itself in two ways. Premature
termination occurred because of variation in when
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winter started. Variation in the length and severity of
winter was modelled by the sigmoidal terminal-
reward function. This section considers a third form of
stochasticity, variation in the energy expenditure or
gain while the animal is foraging. For instance the
energy required to capture a prey item, the number of
prey items caught, and their sizes, are all stochastic.

To model this, y(u,x) is now taken to be the mean
change in x per unit time. The variation about this
mean is modelled as independent of u. This is most
appropriate when variability is in energy expenditure;
in earlier work (e.g. McNamara et al. 1987) similar
results were obtained when variation was in capture
success. We assume a step-function terminal reward
given by equation (8).

Results have been obtained numerically using
dynamic programming. As usual the optimal policy is
a deterministic function of x and ¢, uopr(x,t). But the
state x*(f) and control variable u*(f) of an animal
following this policy are now non-deterministic func-
tions of ¢. Initially we present results in terms of the
mean value of u*(f), E(u*(1)).

In the absence of stochasticity, E(u*(¢)) would be
constant by the Risk-spreading Theorem. When sto-
chasticity is high, E(u*(f)) starts at a higher value
than this and tends to decrease with time, possibly to a
lower value than in the deterministic case (figure 7).
Policies are geared towards a run of bad luck, and
when this does not come about animals have a high
enough x* to afford a lower «*. When variance in gain
is independent of ¥, many animals attain the critical
value x. well before 7, and at T E(x*(T)) > x..

Stochasticity has already been shown to generate a
decline in E(u*(¢)) in a model of feeding routines of
birds (J. M. McNamara, A. I. Houston & S. L. Lima,
unpublished results) and in a model of the dawn and
dusk choruses (McNamara et al. 1987). These examples
use energy reserves as the state variable x. We now
present an example in which an animal must migrate
a critical distance x. and the state variable x is the
distance travelled towards this goal. The animal must
finish its migration within a set time, perhaps because
of the onset of winter, or in order to find an unpaired
mate. Sources of stochasticity might be bad weather,
the direction and strength of winds or currents and
errors in navigation. For instance Cochran (1975)
observed a peregrine falcon on migration that,
depending on the weather, spent 379, to 699, of the
day circling in thermals; in following winds it attained
47 km h~!, but only 16 km h~! in cross winds. Figure
7 is motivated by this example, with the most
appropriate stochasticity being perhaps ¢=>59 km
day~!. We know of no data on birds that shows a
decline in migration rate (c.f. Dorst 1962); a decline in
migration rate has been reported in the Monarch
butterfly (Baker 1978) but there are other potential
explanations, such as fatigue or a changing environ-
ment. Two assumptions of our model may not be
appropriate to many migrating animals: in our model
the migrant knows the precise value of x, and the
value of u chosen does not depend on how favourable
that day is for travelling.

It can just be seen in figure 7 that in two cases
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Figure 7. Effect of stochasticity for an example based on a
bird migration lasting 15 days, in which the environment
varies from day to day. x.=2500 km. M(u,x)=0.001u'%
day~1. y(,x)=300x km day~!. For each curve, o the per-
day standard deviation in distance covered, is given. For
illustrative purposes we show extreme values of o, as well as
more realistic ones.

E(u*(¢)) increases for some of the time. But it should
be noted that this does not imply that a majority of
animals following the policy will be observed to
increase u*. In the more extreme example in figure
8 most of the increase in E(u*({)) is generated by a
minority of birds who have been unlucky and have
consequently dramatically increased their «*. Figure 8
also shows that ¥* =0 for many animals near the end
of the time period. In observational studies these
animals, having ceased foraging (and perhaps moved
elsewhere), may not be included in the sample.
Consequently observations on E(u*(¢)) may be biased
(J.- M. McNamara, A. I. Houston & S. L. Lima,
unpublished results).

6. FIXED TIME: STATE-DEPENDENT
EFFECTS

When first setting up our model we discussed how an
animal’s state (reserves, size, log(size), etc.) might
affect mortality rate and its food supply. We now
analyse such state-dependent effects when the animal
controls its behaviour over a fixed time interval [0,7],
and relate our conclusions to those obtained when
reproductive success was assessed at a fixed state x..
Our starting point is the baseline case of the
previous section. This null case assumed no state
dependence, stochasticity or premature termination.
We will introduce state dependence in turn on energy
gain and then predation. Conclusions hold provided
M (u,x) is either a linear, strictly convex or piecewise
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Figure 8. An abstract example in which stochasticity causes
E(u*(t)) to increase over the first half of the time period.
The solid line shows the mean E(u*(¢)). The dashed lines
show the median and both quartiles of u*. T=1. x.=1.
x(0)=0. M(uyx)=xu5. y(ux)=8u. Standard deviation in
gain o=1.

linear and convex function of u for each x (figure la,b
and d).

(a) Gain dependent on state, predation independent
of state

We first allow y to depend on x, but assume that M
does not depend on x, ie. y(ux)=a(x)u—b(x) and
M(ux)=M(u). It is shown in Appendix 5 that,
whatever the terminal reward function: (1) if 5(x)/a(x)
is an increasing function of x, then »*(f) increases
with £ and (ii) if b(x)/a(x) is a decreasing function of x,
then u*(¢) decreases with ¢.

In the special case b=0, u* is constant. (This also
follows from rescaling x and applying the Risk-
spreading Theorem.) The general pattern agrees with
that derived from Gilliam’s rule in Example 1, where
fitness is assessed at a fixed state. As an example in
which b(x)/a(x) increases with x, consider a small bird
in winter. We take x to be energy reserves, u to be the
proportion of time feeding as opposed to being vigilant
and [0,7] to be a daylight period ending at dusk. For
the sake of illustration, we suppose, perhaps unrealisti-
cally, that predation risk does not depend on energy
reserves. a(x) is then the energy gained per unit time
feeding and b(x) is the rate of metabolic expenditure.

In this scenario it is reasonable to assume that a(x)
is either constant or decreases with x, because a
heavier bird has fewer feeding options available.
Metabolic expenditure, especially of flight, will in-
crease with reserves. Thus b(x)/a(x) increases with x
and hence u*(¢) increases with ¢ i.e. according to this
simple model the bird should become less vigilant as
dusk approaches. Figure 9 illustrates »*(¢) and x*(¢)
when a(x) is constant, b(x) increases linearly with x
and M (u) =mu?. It is shown in Appendix 5 that u*(¢)
is proportional to exp(bif) where by =5’(x) in this case.

Phil. Trans. R. Soc. Lond. B (1993)
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(b) The form of state-dependent predation

In the last example it was perhaps unrealistic to
assume predation was independent of state. Once we
introduce state dependence on predation risk we must
specify not only how M (u,x) changes with x for fixed u,
but also how this relationship changes when beha-
viour, u, changes. As we show below, this interaction
between x and u is crucial. We consider two cases in
detail: a multiplicative and then an additive interac-
tion.

To isolate the effect of state dependence in pre-
dation from that in energy gain, we will assume that
a(x) and b(x) are constant. In fact the case in which
b(x)/a(x) is constant can always be reduced to this case
by rescaling x (Appendix 2).

(¢) Gain independent of state, multiplicative state-
dependent predation

Assume that a(x) =a and b(x) =5 are constants and
that M can be written multiplicatively as

M (u,x) = N(u)o(x),

where N is some function of z and o is some function
of x. This form of mortality might apply to vigilance
behaviour. Suppose that an animal which detects a
predatory attack escapes; if it fails to detect the attack
it sometimes escapes. Therefore

Probability fails
to detect

mortality  attack
rate " rate

Probability
to escape

Typically, the probability that it fails to detect is a
function of the proportion of time spent vigilant, 1 —u,
and hence of u. If escape is hampered by excess fat
reserves, the probability it fails to escape is a function
of x.

We begin with a general result valid for any
terminal reward function. As before, ug is the value of
u which minimizes M/y. Because

M(u,x) [y (u,x) = (N(u)/ (au—b))a(x),

uc does not depend on x. Results can then be
expressed in terms of how predation depends on state
and the value of u* compared with ug. In Appendix 6
it is shown that either u*(¢) <ug for all ¢ between 0 and
T or u*(t) Zuc for all t between 0 and 7. If a(x) is
increasing in x, u*(¢) increases in ¢ if u*(f) <ug and
decreases in ¢ if u*(f)>ug. Conversely if o(x) is
decreasing in x, u«*(f) decreases if u*(f)<ug and
increases if u* (f) 2 uc. These results are summarized in
table 24(1) and illustrated in figures 10z and 1la.

(1) Step-function terminal reward

When the terminal reward is given by equation (8)
and N is such that N(0)=0, the results given in table
2a(1) can be rephrased in terms of the initial state x(0).
Let xg be the state at time O such that, when the
control variable is maintained at the value ug, the
state at time 7T is x. (i.e. xg+ 7 (ug) T=x.). Our results
are derived in Appendix 6, summarized in table 25(i)
and illustrated in figures 10 and 11. When the starting
value x(0) equals xg, u* is constant over the time
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Figure 9. The effect of mass-dependent metabolism on a small bird. The parameters are the same as in figure 4a
except that metabolic cost b(x) = b+ b1(x—0.5) g h~L. by is always 0.1 g h~1, so that metabolic cost at x=0.5 g is the
same in all cases. (a) Control variable u* as a function of time. (i) 4=0.2 h~%; (ii) b;=0.1 h~% (iii) 5=0.02 h~}
(iv) b1=0. In all the solid lines the start value was 0.5 g. The dashed lines are for a range of start values in case
(ii); corresponding trajectories of reserves are shown in ().

interval [0,7"] and equal to ug. So for this special case
the optimal trajectory is the same as that when fitness
is assessed at a fixed state. For other starting values u*
is not constant; whether u* increases or decreases with
time can now be specified in terms of whether o is
increasing with x and whether x(0) is greater than xg.

(i1) Ludwig & Rowe (1990)

We now show how the results in table 24(i) can be
used to rederive a result of Ludwig & Rowe (1990).
They consider an animal which has a choice between
two habitats. Habitat 2 has a higher rate of food gain
than Habitat 1 but also has a higher predation risk.
They analyse in detail a case in which the rate of
change of weight w is

dw/dt=Al(w) in Habitat ¢,
and the predation risk is
sm(w) in Habitat 7.

(Here we have used the symbol s; rather than Ludwig
& Rowe’s y; to avoid confusion with our y(u,x).)

To re-express their model in terms of our current
model we define a new state variable x by dx/
dw={(w)~!. Then (Appendix 2)

dx/d¢=X; in Habitat i.

Defining a function a by a(x) =m(w(x)), the predation
risk in Habitat i becomes so(x). Now let « be the
proportion of time in Habitat 2. Then it is easily
shown that the rate of gain is

y(u,x) = (/\2 — /\1)% + /\1,

Phil. Trans. R. Soc. Lond. B (1993)

and the predation risk is M (u,x) = N(u)a(x), where o is
defined above and

Nu)=s1+ (s2—s1)u.

Thus gain is independent of state, x», and M is
multiplicative.

Consider the case in which s3/A2 <s1/A1. Then an
animal minimizing its predation risk per unit increase
in state should spend all its time in Habitat 2; i.e.
ug=1. It follows that u*(f)<uc for all . We now
apply the results shown in table 2a4(i). They show that
when «(x) (and hence m(w)) is increasing, u*(¢) is
increasing. Thus any switch of habitat that occurs
must be from Habitat 1 to Habitat 2. Conversely if o is
decreasing any switch must be from Habitat 2 to
Habitat 1.

Analysis of the case s1/A; < sg/Ag is similar. In this
case ug=0. Table 2a(i) then shows that when o is
increasing, any switch is from Habitat 2 to Habitat 1,
and when o is decreasing any switch is from Habitat 1
to Habitat 2.

Ludwig & Rowe (1990) implicitly assume that m(w)
(and hence a(x)) is a decreasing function, and our
results agree with their results for this case. We have
also just shown that assuming m(w) increasing gives
opposite predictions.

(d) Gain independent of state, additive state-
dependent predation

As in the previous model we assume that a(x)=a
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Figure 10. Multiplicative mass-dependent predation with predation increasing with mass. The example is again of
the small bird of figures 4a and 9 except metabolic cost 4(x) =0.5 g h=! and M(u,x) =k u* (1 +./(2x))? (so that, as in
(ii} of figure 9, reserves of 1.0 are twice as ‘expensive’ as reserves of 0.5). (a) Control variable #* as a function of time
for different starting values x(0). The corresponding trajectories of reserves are shown in (5).
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Figure 11. Multiplicative mass-dependent predation with predation decreasing with mass. The example is based on
the hypothetical fish of figure 2, which now must attain a mass of 1 kg within 600 days. Let w=body mass/kg. We
assume dw/d¢=(0.03xz—0.005)u"™ day~'. To remove the mass dependence on gain, we define a new state variable
x=u"%, so that dx/df=0.00752—0.00125 day~*. Predation is inversely proportional to mass (Type IIT survivorship

curve): M(u,x) =ku?/x*. (a) control variable u* as a function of time for different starting values x(0). The
corresponding trajectories of reserves are shown in (5).
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Table 2. The dependence of u* on time when mortality  (a) Foraging and satiation

depends on stale When foraging is being studied, # has a clear

(Gains independent of state, fixed final time.) interpretation in terms of foraging intensity, with the
(@) M(ux) = N(u)a(x) animal’s rate of energetic gain being given by y(x,u) =
(i) classification in terms of u*(¢) a(x)u—b(x). When x is the animal’s level of energy
u*(8) <ug u* () = ug reserves, 6(x) can be thought of as mass-dependent
o' (x)>0 du*(dt=0 du*/dt<0 metabolism, so a(x)u is the gross rate of gain. Rate
o' (x) <0 du*/dt<0 du*/dt=0 maximization corresponds to u=1.

(ii) classification in terms of x(0) when R is a step The Risk-spreading Theorem tells us that if there is
- function and N(0)=0 no premature termination of the foraging process and
@ x(0) <xc x(0) = xg no refuge, if a(x) and 4(x) are constants a and b and if
o' (x) >0 du*/dt<0 du*/d¢t=0 energetic gain is deterministic rather than stochastic,
o' (x) <0 du*/dt=0 du*/dt<0 then it is optimal to keep u constant over the foraging
(6) M{uyx) = N(w) +a(x) period. To get satiation effects, one or more of these

o« (x)>0 du*/de=0 conditions must be violated. )
o (x) <0 du*/dt<0 It is often observed that intake rate declines over a

foraging bout (e.g. Bousfield 1933; McCleery 1977).
We refer to this as satiation. This term does not
necessarily imply physiological constraints such as
filling of the gut and indeed our model assumes no
M(u,x) = N(u)+o(x). such constraints. The models of satiation suggested by
Sibly & McFarland (1976) and Heller & Milinski
(1979) involve a cost that is additive in state and
behaviour. It is not clear, however, what aspects of the
animal’s biology these costs are meant to represent
(but see Sibly & Calow 1986). Our results establish a
variety of conditions in which the optimal value of u
decreases with time. In the absence of state-dependent
effects, stochasticity or premature termination can
result in such a trend. In our model, if an animal’s
foraging is terminated before final time, the animal’s
reserves decrease until final time. Houston & McNa-
mara (1989) modelled premature termination in a
slightly different way, but they also found satiation
effects.

In the absence of stochasticity or premature termi-
nation, state-dependent effects can produce satiation.
When predation is independent of x, if a(x)/b(x) is a
decreasing function of x then it is optimal for u to
decrease over time. When a(x) and 4(x) do not depend
on x, then state-dependent predation can result in
satiation. When the effects of state and behaviour are
additive, so that M (x,u) =a(x)+ N(u), then the opti-
mal behaviour involves satiation if «’(x) <0. But
unless birds Wwith low reserves are too weak to avoid
predation, it seems unlikely that an increase in
reserves will reduce predation risk. When the effects
of state and behaviour are multiplicative, i.e.
M(x,u) =0(x) N(u), an increase in predation with
reserves can under some circumstances result in
satiation. The relevant results are summarized in
table 2.

and b(x)=5 are constants, but now assume that
predation risk can be expressed additively as

THE ROYAL
SOCIETY

This form of M would arise if there were two
independent sources of mortality, one source dependent
on behaviour alone and the other source dependent on
state alone.

It is shown in Appendix 7 that «* increases with
time if and only if &’(x) > 0. This result is included in
table 2. '
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Sibly et al. (1985)

These authors investigate a model of optimal
growth that can be transformed so that gain is
independent of state. In our terms, x is the logarithm
of size, and dx/d{=u (see Appendix 2). They reach the
conclusion that »*(¢) is increasing if and only if
o’(x) >0. We have seen that this result holds for
additive mortality but not for multiplicative mor-
tality. Sibly et al. specify how mortality depends on x
for fixed « and on u for fixed x, but do not discuss how
x and u interact. Their conclusion is based on a
graphical argument, which rests on the implicit
assumption that mortality as a function of « does not
change over time. But mortality depends on » and x
and so as x changes, the mortality function will
change. When M(ux)= N(u)+oa(x), the effect of
increasing x is to shift the function upwards without
changing its shape. In this case the argument of Sibly
et al. applies. When M(u,x)= N(u)o(x), then as x
increases, the shape of the function changes and the
argument of Sibly et al. is invalid.

7. DISCUSSION

THE ROYAL
SOCIETY

In this paper we have established some general
analytic results concerning the trade-off between
gaining energy and avoiding predation. We have also Mangel (1990) considers two sorts of model of
carried out numerical investigations of cases that we  optimal flock size. In the one that is directly relevant to
have not solved analytically. Our results are relevant this paper, flocks form before food is found. The flock
to a variety of biological contexts, including foraging, size n in which a bird forages determines the mean and
choice of habitat and growth. We now discuss these  variance of the bird’s energetic gain and the probability
topics, bringing out the implications of our results and that it is killed by a predator. Mangel assumes that the
comparing them with those of other people. mean gain and the danger of predation both decrease

(b) Group size
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as n increases. Metabolic expenditure increases with
increasing energy reserves.

To put Mangel’s model into our terms, we can
regard flock size n as being parameterized by u, such
that « decreases as n increases. If we ignore the fact
that u influences variance, then our results indicate
that in the absence of stochasticity and mass-depen-
dent effects, flock size should be constant over the
foraging period. If either stochasticity or mass-depen-
dent metabolism are present, they will tend to make
u* decrease with time, which means that the optimal
flock size should increase.

Mangel computed optimal flock size as a function of
reserves and time when R(x)=x/(x+0.1). He found
that optimal flock size increased with ¢ for fixed x. It
does not follow, however, that flock size will increase
with time. As Mangel points out, to find expected
behaviour it is necessary to follow the policy forward
in time. In our terms, optimal flock size is related to
uopr(%,t). To determine »* it is necessary to find not
only uppr, but also how x changes over time when the
optimal policy is followed.

(¢) Growth

When an animal’s growth is not constrained to
occur within a fixed time interval, Gilliam’s u/g
criterion provides a simple way to combine the
disadvantages of predation and the advantages of
growth. It has been used to analyse growth and
habitat choice in fish and amphibians (e.g. Werner
et al. 1983; Werner & Gilliam 1984; Werner 1986;
Werner & Hall 1988). As Ludwig & Rowe (1990)
point out, the criterion will not necessarily result in
optimal behaviour when there are time constraints. In
this paper we have shown that a time penalty is
equivalent to an extra source of mortality, 6y, that is
independent of the animal’s choice of action. The
effect of such an additional mortality is to increase the
optimal rate of growth above the Gilliam rate ug.

If there are no time constraints, we can use the u/g
criterion to explore the effect of an increase in
predation pressure. The prediction depends on how
the effect of predation pressure, o, and the effect of
behaviour, N, jointly determine mortality. If mor-
tality is the sum, o+ N, of these terms so that there is
no interaction between the sources of mortality, then
Gilliam’s criterion predicts an increase in growth rate
with increasing predation pressure. If mortality is the
product, aN, of these terms, then Gilliam’s criterion
predicts that predation pressure should have no effect
on growth rate. If, however, mortality rate is a N+ 6
where 6 is a source of mortality (or a time penalty)
which is independent of predation pressure, then
Gilliam’s criterion predicts a decrease of growth with
increasing predation pressure.

The predation pressure o may be increased in two
different ways. First, a=a(x) is a function of size x,
and there may be a range of sizes for which the
predation risk is especially high. Should the animal
hurry through this size range? The above discussion
shows that this is not necessarily advantageous; the
optimal behaviour depends on specific details.

Phil. Trans. R. Soc. Lond. B (1993)
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Secondly, even two animals of the same size may be
exposed to different levels of predation because they
are in different localities or because predation pressure
may vary from year to year. If an animal can detect
such variation, should an increase in predation pres-
sure decrease growth rate? Such a decrease has been
observed (e.g. Skelly & Werner 1990; Werner 1991;
Fraser & Gilliam 1992). The above analysis suggests
reasons for this. There is, however, another explana-
tion. Animals may interpret an increase in predation
pressure as temporary and play safe by adopting a low
growth rate while waiting for the danger to decrease.

(d) Flexibility in both final state and final time

Our paper has dealt with the increase of the state
variable to a fixed state or decision making within a
fixed time. Although these scenarios are sometimes
appropriate, very often the animal decides both its
final state and its final time, there being a trade-off
between the advantages of a high final state and the
disadvantages of a late final time. For instance a male
spider deciding how large to grow before moulting
into an adult, should trade-off the advantages of
larger size (e.g. in terms of mate. choice) with the
disadvantage of finding fewer unmated females if he
moults later. Rowe & Ludwig (1991) analyse this sort
of trade-off with reference to life-history decisions such
as metamorphosis.

Our models do not deal directly with the case in
which both final state and time are flexible. Neverthe-
less, our results do yield insights into this situation.
Suppose there is no stochasticity and that the final
state under an optimal policy is x¢ and the final time is
tr. Our results will not predict xr or fr. But whatever
their values, the optimal trajectory will coincide with
the optimal trajectory for a fixed-time problem with
final time 7=ty and a step-function terminal reward
with x.=xp. Thus if the qualitative form of the
trajectory predicted by our fixed time analysis does
not depend on xf or iF, we can predict the form of the
optimal trajectory when final state and time are
flexible. For example, in the absence of complicating
factores such as interruptions and mass dependence,
the Risk-spreading Theorem will still predict that a
constant value of u is optimal whatever the trade-off
between final state and time. Similarly, if we now
make metabolic expenditure increase more rapidly
with state than food intake (b(x)/a(x) increases with x)
then we still predict that »*(f) will increase with
time ¢.
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APPENDIX 1. MODIFICATION TO GILLIAM’S
(1982) RULE WHEN THERE IS
STOCHASTICITY

We assume an animal has a choice of options, where
each option is characterized by a mortality rate M, a
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mean net gain per unit time y and a variance in gain
per unit time o2 Reserves are in the range ( — 00,x,)
and we seek the strategy which maximizes the ani-
mal’s probability of reaching x..

Let x < y < x.. Then it can be seen that the optimal
policy for reaching x. from x must maximize the
probability of reaching y from x. It follows that the
optimal action to choose in state x(x < x.) does not
depend on x. We can therefore restrict attention to
policies which always choose the same option, and
seek the best policy in this class.

We model the change of reserves under the policy of
choosing a fixed option with parameters M, y and ¢2
as a diffusion process with killing rate M, drift y and
diffusion coefficient 62. Let f(x) be the probability of
reaching x. starting from x under the policy. Then f
satisfies the backward equation

b (x) + of"(x) — Mf(x) = 0, (ALL)
and boundary condition
Slxe) = 1. (Al1.2)

It can be verified that equations (Al.l) and (Al.2)
have solution

Sx) = exp{ = K (xe — x);
where £’ is the positive root of the equation

sk % + 9k — M = 0.

XS X, (A1.3)

(Al.4)

Thus £’ is given by equation (7).

Since, for each x, f(x) is maximized by minimizing
k' we conclude that the optimal policy is to always
choose the fixed option which minimizes £’.

Finally, we note the analogy between £" and the
performance criterion k= M/y of Gilliam (1982).
When there is no stochasticity the probability of
reaching x. under a fixed option with parameters M
and y is
g(x) = exp{ — k(x. — x)}. (A1.5)

Thus, by comparing equations (Al.3) and (Al.5) we
see that £” plays the same role in a stochastic setting as
M|y plays in a deterministic one.

APPENDIX 2. TRANSFORMATION OF THE
STATE VARIABLE

The rate of increase of the state variable x is given by
dx/dt = p(u,x). (A2.1)

Assume y(u,x) = a(x)u — b(x). Define the new state

variable y = y(x) by

where xg is some fixed reference state. Then dy/dx =
1/a(x) and hence by equation (A2.1)

Y
3 = Ywx)fa(x) = u— (b(x)/a(x)),
so that the term multiplying » does not depend on
state. If 5(x) and a(x) scale the same as each other, the
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ratio b(x)/a(x) dOCS. not depend on x. Calling the ratio  Af and the variance of U. For M(u) = mu® formula
B we can then write (A3.7) is exact and reduces to

dy/dt=u— B E{M(u)} = mu** + mVar{U}. (A3.8)

so that, in the new state variable y, rate of increase of

state is independent of state.
APPENDIX 4. OPTIMAL POLICY WHEN

THERE IS A REFUGE
APPENDIX 3. THE RISK-SPREADING

THEOREM We assume that y(u) = au—'b where a a'nd b are
constant, and assume AM(u) is a convex increasing
Assume y(u,x) = au — b where a and b are constants,  function of u which satisfies M(0) > 0. Inside the
@ and that M(u,x) = M(u) is a convex function of u  refuge there is no predation and y = — b. The
alone. Let states xp and x7 be given. Let u* be the  terminal reward function is given by equation (8).
constant value of the control « such that if x(0) = xg If x(0) = x. + 6, T the animal can survive by enter-
then x(7T) = x7; i.e. ing the refuge for the whole time period. We thus
(@ — 0T = 37— 5. (A3.1) henceforth restrict attention to the case

Here we consider all controls u = {u(¢):0 << T} #(0) < % + b T (Ad.1)
during [0,7°] such that if x(0) = xp then x(7) = xr, By the Risk-spreading Theorem the optimal policy
and show that the control minimizing predation risk  involves the use of the same control z whenever the
within this class is given by u(¢) = u* for all €[0,7].  animal is not in the refuge. Thus the optimal policy

Let u be a control such that if x(0) = x, then  must be of the form: spend time ¢ out of the refuge

THE ROYAL
SOCIETY

x(T) = x7. Then using fixed control u and spend time 7 — ¢ in the
T refuge. Clearly ¢ must satisfy 0 < ¢ < 7. It can also be
fy(u(t))dt = X7 — X0, (A3.2) seen that it cannot be optimal to use a value for u for
0 which au + b, — b < 0; for then it would be better in

so that by equations (A3.1) and (A3.2) and the terms of both energy gain and predation risk to enter

definition of y the refuge. Thus if we define uy;, by

PHILOSOPHICAL
TRANSACTIONS
OF

| T Umin = max{0,(b — b;)/a} (A4.2)
— —
T gu(t)dt s (A3.3) an optimal u must satisfy
The probability of surviving until time T under this  “min <# < 1. (A4.3)
control is Finally, note that since an optimal policy must result
T in x(T) = x, u and ¢t must be related by the constraint
and is minimized by minimizing and hence
17 % —x(0) + 6T
S = g M(u(t))dt. (A3.4) =T om (A4.4)

By equation (A4.1) ¢ > 0 provided u satisfies equation
(A4.3).

The predation risk under the policy of employing
control u for time ¢ is 1 —exp{— M(u)t} and is
minimized by minimizing M («):. Thus, by equation

Now let W be a random variable which has a
uniform distribution on the interval [0,7] and define
the random variable U by U=u(W). Then equation
(A3.3) can be written as

] EWU)=u* (A3.5) (A4.4) the optimal control « minimizes
< and equation (A3.4) can be written as M(u)
>~ : Sy == (A4.5)
On Sw-EHMU). (A3.6) et b=
=4 e Our problem then becomes one of choosing a random ~ subject to the constraint (A4.3) and the constraint
kO variable U taking values in [0,1] which minimizes (< 7. ) .
E O E{M(U)} subject to the consttaint that E(U)=u*. We now Iook' at the .be.havpur of f(u) in the range
= Since M is convex, Jensen’s inequality tells us that this  “min < ¥ S 1. Differentiation gives

can be done by choosing U equal to a constant u*; i.e. f(u) = (au + by — b) ~2[ M’ (u)(au + by — b) — aM(u)].

the optimal policy has u«(f) =u* for all t€[0,T].
An approximate formula for the cost of deviating ~ Thus f"(«) < 0 for u sufficiently close to umin. We also

from u* can be found by expanding M(«) in a Taylor ~ have

series about u=w*. This expansion gives

d
E{M(U)} ~ M(u*) + 4M” (w*)Var {U}. (A3.7)  quM Wlaut b= 8) = aM)} = (au+ b = H)M"(w),

Thus the cost increases with the degree of convexity of ~ which is positive for u > uy, as M is convex. Thus
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there exists #gE(Umin,1) such that f'(u) <0 for
UE (Uppiny i) and f(u) > O for ue(dg,1). fis thus unimo-
dal on the interval (ug;,,1) with a minimum at 4.
Now define £ so that

ig + (adg — b) T = x.. (A4.6)

Consider the case x(0) = £g. Then if control u = dg is
used, the time ¢ must satisfy ¢ < T by equation (A4.6)
and (A4.4). Thus f(x) is minimized subject to con-
straints (A4.3) and ¢< T by setting u=dg. If,
however, x(0) < £, the constraint ¢{< 7 implies
u€(dig,1). Since f(u) is monotonic increasing for u in
this range f () is minimized subject to the constraint
¢t < T by choosing u as small as possible subject to this
constraint. This value of 4 can be seen to result in
t=T.

APPENDIX 5. GAIN DEPENDENT ON STATE,
PREDATION INDEPENDENT OF STATE

We assume that

dx/dt = a(x)u — b(x). (A5.1)

No assumptions are made about the form of the
terminal reward R. Let the initial state x(0) be given,
and let x¢ denote the state at time 7 under an optimal
policy. Then a fortiori the optimal policy minimizes the
probability of death from predation among all those
controls for which »(T) = x7. We thus seek a control
u = {u(t):0 < ¢ < T} which minimizes

(cf. Appendix 3) subject to the constraint that
x( T) = XT.

We use the Pontryagin Maximum Principle (PMP)
(Lee & Markus 1967). As in the text let x*(f) and
u*(f) be respectively the optimal trajectory and the
optimal control along this trajectory. Then the costate
variable p(¢) satisfies

p(6) = p(t) [@ (x*(0)u*(0) — 0" (x*())],
and the optimal control maximizes the Hamiltonian
H(x,u,p) = pla(x)u — 6] — M(u).

We have

(A5.2)

4 L pate* ()] = pra+ par S (20
10l 0) = pa + par T (5 0)
— pab’ — a'b]

by equations (A5.1) and (A5.2). Here all functions are
evaluated along the optimal trajectory. Manipulating
equation (A5.4) then gives

d d b
{log(pa)} = b— {log (;)}

Thus

(A5.4)

x=x*(l)

p(t)a(x*(t)) increases with ¢ <> b(x)/a(x) increases with
xatx = x*(f).

Phil Tranc R Sor Tond R (1993)
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By equation (A5.3) the optimal choice of « maximizes
fw) = pau — M(u). (A5.5)
But then f’(u) = pa — M’(u), which increases with pa
for fixed u. It follows that the value «* maximizing
f(u) is a non-decreasing function of pa. Thus

u*(t) increases with ¢ <> p(f)a(x*(f)) increases with ¢
<> b(x)/a(x) increases with x at x = x*(¢).

In special case a(x) =a = const, b(x) = b+ b1x
and M(u) = mu®, equation (A5.2) gives p'(f) = bip(t),
so that p(f) = Ae?’. Equation (A5.5) than becomes
flu) = ade®u — mu?,
and hence f’(u*) = 0 implies
Qmu* (f) = adel.

Thus u*(¢) increases exponentially with ¢ provided
u* < 1.

APPENDIX 6. GAIN INDEPENDENT OF
STATE, PREDATION MULTIPLICATIVE

We assume y(u,x) = au — b where a and b are con-
stants and that M(u,x) = N(u)a(x) where N(u) is
increasing and either linear or convex. Initially we
make no assumptions about R.

Proceeding as in Appendix 5 we deduce that the
optimal control maximizes

Hixup) = p(0) [au — b] — a(x) N(w) (A6.1)
as a function of u, where the costate p satisfies

p(8) = o (x) N(w).

To apply these equations we investigate the properties
of the function f defined by

S(wt) = p(t)au — a(x*(4)) N(w).

From equation (A6.1), for each ¢€[0,7] u*(¢) maxi-
mizes f(u,t) as a function of u. Since

(A6.2)

(A6.3)

5= —ax*())N"(u) <0
[ is either linear or concave. It follows that if

62
L w0

\%

0

we must have u*(f) increasing in ¢, and if

62
T w0

N

0

we must have u*(¢) decreasing. Thus we can find the
form of « by finding the sign of

f
owdu’
From equation (A6.3)
il d
T~ ap () — ()N ) (% 1),
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Now When o is a decreasing function of x a similar
d analysis shows that either u*(f) < ug for all £ and u*(¢)
d_t(x*(t)) = au*(¢) — b, is decreasing or u*({) = ug for all ¢ and u*(¢) is
increasing.
thus by equation (A6.2) the above equation gives Now assume that R is given be equation (8) and
52 that N(0) = 0. If x(0) is such that x(0) — & > x. then
_f- = o/ (x*(1)) [aN(u) — (aN(u) — (au — b)N'(u)]. u*(¢) = 0 for all ¢. If x(0) is such that x(0) + a — b < x.
0tdu then all controls give zero payoff. We thus restrict

(A6.4) attention to the case x.+ b —a < x(0) <x. + 6. In

Define the function 4 by this case it is possible to be in state x. at time 7, and it

can thus be seen that x*(7T) = x. under an optimal

00 b = a0 — (= V0. policy.
Let xg be such that xg + (aug — &) T = x.. Then
fc bla. F =0 G G .
> Then (u) > 0 for u < bla. For u = bja since x*(T') = x. and u*(f) — ug does not change sign
< — W(u) = — (au — b)N"(u) <O. on [0,T], we have x(0)> xg = u*(0) <ug and
5 —~ Define ug by h(ug) = 0 if h(1) < 0, else set ug = 1. x(0) < xg = u*(0) > ug. Thus when « is increasing
[ = Then x(0) > xg = w*(¢) increasing on [0,7],
[—
O h(u) =0 for 0<u<ug, x(0) < xg = u*(t) decreasing on [0,7].
: o h(n) <0 fi <u<l. The analysis of the case where « is a decreasing
=« “ N oS function of state is similar and reveals
_ We note that since )
<‘£ x(0) > xg = u*(t) decreasing on [0,T],
O d[ N~
EQ W [au (u)b] = — (au — b) b (u), x(0) < xg = u*(¢) increasing on [0,T'].
- _

8U L S
U); 0 UG minimizes
9z N(w)
En: au—b APPENDIX 7. GAIN INDEPENDENT OF
oy

. .. STATE, PREDATION ADDITIVE
among those « for which au — b > 0. Thus ug is in fact

the Gilliam rate defined in the main text. As in Appendix 6 we assume a and b are constants, but
Returning to equation (A6.4) we see that if « is an  now assume that M(u,x) = a(x) + N(u).
increasing function of x then Applying PMP the optimal control maximizes
0<u<us _g;_{ >0, H(xup) = p(t) [au — b] — a(x) — N(u) (A7.1)
tou as a function of u, where the costate p satisfies
and ] Pl = (x4 (1)), (A7.2)
of
<ugl=>—-2x<0 Let
e dtéu
S(u,t) = p(tyau — N(u). (A7.3)
Thus

Then fis linear or convex and, for each €[0,T], u*(t)
maximizes f as a function of u. By equation (A7.2)

(=]
N
<
=
y
o)
U
2|
o
=
\Y
K=

G
and Fon = (x*(8).
d
ug S u*() <1 =—(u*(t)) <O. Thus,
dt 5

It follows that if 0 < u* (O) < U, then 0 < u*(t) < U o increasing = —atau >0= u* increasing,
for all «€[0,7] and w*({) is increasing on [0,T]. .
Conversely if ug < u*(0) < 1, then ug < u*(¢) < 1 for

ad ing =>-—><0=u*d ing.
all €[0,7'] and u*(¢) is decreasing on [0,7T]. ecreasing, ™ cecreasing

Otou
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